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We investigate the Lipschitz continuity of the best approximation operator
from a Hilbert (Banach) space into an approximatively compact subset. We study
the notion of directional radius of curvature and show how the Lipschitz con-
tinuity of the metric projection depends on it.

1. INTRODUCTION

Let M be a set in a Hilbert space H. We define the metric projection P by
P(x) ={ylye Mandinf, | x — m| =| x — y|} where x is any element
of H.

In our discussion we shall assume that M is an approximatively compact
set which insures that P(x) is not empty.

If M is a closed convex set then it is well known that each P(x) is a singleton
and {f P(y) — P(x)l| <ily — xl. When M is a C%approximatively compact
manifold, Jerry Wolfe in [6] has proved that P is a singleton, differentiable
in an open dense subset 4 (4 " M = @) of H and the present author has
shown in [1] that || P'(x)|| = p/(p — r) in A where r = || x — P(x)|| and p is
the radius of curvature of M at P(x) in the direction x — P(x).

If M is a closed subset in R”, Federer in [3] has proved that under suitable
conditions, P is a singleton and | P(y) — P(x)| < ¢[/{¢ — M)}l x — v,
where ¢ << w(P(y)) and w is the reach; see definition 11-13 in [4].

In this paper we give best estimates for

= [ PO) — P
v ly — x|

in various settings.

2. DEFINITIONS

A subset M of a Banach space B is called approximatively compact if,
for each xe B and each sequence {m,} C M such that |x —m,\| —
inf,,ca |l x — m !, there exists a subsequence {mnk} converging to a point of M.
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3. RaDpIUS OF CURVATURE

Let x be in a Banach space B and m be a closest point to x from M(x).
Alsoletv = (x — m)/|| x — m]|.
We consider the line m -+ tv, 1 € R, and points p € M close to m such that

[t] =|lm+tw—p|

for some t, — o0 < t < oo, If the above equation holds for no finite ¢, set
t = oo. We now define the directional radius of curvature of M at m in the
direction v, p(m, v), by

-1
p(m,v)zlimtewheretéz[ sup gl1|tlznm——p+tv[|]
€l0 0 <jlu—m||<e Ut

It can be shown, see [1], that if M is a C? manifold in a Hilbert space H and
if M is locally represented by f around m, then

1 {Aw, wy
p(m, v) — {Bw, w>
where
m=1@, B =1 @ f@ 4= ((s55))

The lemma below, which is a generalization of Theorem 11-8 in [4], illustrates
the geometric significance of p(m, v). For convex sets M, p(m, v) < 0.

LemMa 3.1.  Let M be a closed set in a Banach space B, x € B and m € P(x),
m #= x. Let 0 < & < | p(m, v)|, and set y = m - (p(m, v) — 8)v. Then there
exists €; > 0 and an open ball B(m, ;) such that;

@) Ifp(m,v) > 0andm' e M N B(m, €5), then||y —m| <[y —m'|.
®) If p(m,v) <O, then |y —m'|| < ||y —m] for all m" in M N
_B(m, Ea).

Proof. (a) Suppose not. Then for n = 1, 2,... there is an m, % m in
M N B(m, 1/n) such that

ly —ml| >y —m,i.

Choose a, > 0, so that ||y — a,v — m|| = ||y — a,v — m, ||. Substituting
for y and setting p = p(m, v), we get

lp—8—a,| =llm—m,+(p—38—al.
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Then Iim,,., 1/(p — 8 — a,) = 1/(p — 8) > 1/p, contradicting the definition
of p.

(b) Suppose not. Then, for n =1, 2,..., there is an m, % m in
M 0 B(m, 1/n) such that |y — m| < ||y — m,|l. By definition, p =
p(m, v) < lim, ., ¢, < 0 where

|t ] ={lm —m;, + twil.

Then clearly p — 6 < ¢, <0 for » sufficiently large and ||y — m|{ =
(m — m,) 4+ (p — & | = ||y — m, |, a contradiction.

4. THE POINTWISE LIPSCHITZ CONTINUITY OF THE METRIC PROJECTION
We shall need the following lemma [5, p. 388].

LemMMmA 4.1. Let M be an approximatively compact subset of a Banach
space B. Suppose x € B has m as a unique closest point from M and let {x,} be a
sequence converging to x and {m;} a corresponding sequence of closest points
in M. Then m,, - m.

The following theorem establishes the pointwise Lipschitz. continuity of
the metric projection in terms of the radius of curvature.

THEOREM 4.1. Let M be an approximatively compact set in a Hilbert space
H. Suppose x € H, x ¢ M, has m as a unique closest point from M. Assume
p(m, x —mf|x —m|) = p % || x — m|| = r. Then if m, € P(y), we have

m=lmy —m| 2p
lim .
wx lly—xll Tp—r

Proof. Without loss of generality assume m = 0 and p > 0. (The case
p << 0 can be treated similarly and the case p = 0 can be reduced to that of
p > 0).Sincem = 0,v = (x — m)||| x — m|| = x/r. By Lemmas 3.1 and 4.1,
for any 6 > 0,0 << & < p, if y is sufficiently close to x, we have

lp—381 <l(p— v —myll,

and so
p— 8
;

(p—08p<(p—0P—2 <x, myy + | my |2

Hence

2270 omyy <limy 2 (1)
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It is also clear that || y — m, [|*> < | y |?, from which we obtain
| my, (2 < 2{y, m,). (2

Write (2) as | m, |2 < 2{y — x, m,> + 2{x, m,>. We substitute (1) into this
to obtain

iy |2 < 200 = my) o+ sy,

— 5=
E sl P <2y = xmy). 3)

By Lemma 3.2 in [2], r < p, so that if & is sufficiently small, then
p — & — r > 0. Now inequality (3) implies that

2(p — 9)

Imylr < B2y — xfmy | ©)

from which we get

Tim | my |l < P—8 ,
vx [y — x|l p—0—r

and hence

ExampLE. Let H be Euclidean 2-space and M = {¢*® | 7 < 6 < 27} U
{e¥|n =1,2,3,..}, where 0 < - < 8,, <0, < <80, <m0, >0
and 6,,,/6, — 0. Then M is approximatively compact. Let x = 1 — r with
0 << r << 1. Ttis clear that 1 is the closest point to x in M. Also p(1, —1) = 1.
Consider

b, +29n+1 et b, +29"+1 )on=12,..

V= (1 — r)cos(
Then pe?®= and pet®=+1. are the closest points in M to y,. Computation gives

| X~y | = (1 — r)sin Gt Ony and]l—eie”|:2sing’i,
2 2

so that

_ lim 2 sin (6,/2) _ 2
o [x—y,| e (L=r)sin((@n + 0,)2) 1 —7"

This example shows the sharpness of Theorem 4.1. We now obtain a related
result for closed convex sets which is sharper. It should be remarked that for
such sets p << 0.
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THEOREM 4.2, Let M be a closed convex set in a Hilbert space H. Then
Jor x¢ M,

Tim LPW) — Pl < 2
vx o fly—xl T2 —r

where p = p(P(x), (x — P(x))/r) and r = || x — P(x)].

Proof. We may assume P(x) = 0. It follows from Lemma 3.1(b) that for
every & > 0 there exists €(8) > 0 such that if || P(¥)| < (8), then

fo-0% = r0ff <l -9 2
from which we get
$x, P(yY) < ( 5) I P(p)IP. )

Also by convexity of M we have {(y — P(y), —P(y)y < 0 which implies
| POIE < <y, POy = <y — x, P(y}) + <{x, P(yD. @

From (1) and (2), we obtain, using Schwarz’s inequality,

PO 2p—9)
ly—xi ~2p—8 —r"

Hence

I PO 2(p — 9)
I X S —5 7

and therefore

y-x Hy— x|} “2p—r"

ExaMPLE. Let H be as in the previous example and let M be the convex
set whose boundary is the union of the semicircle e, = < 8 < 27 and the
polygon whose vertices are e?= where 0 < - < 8, < = < 0, < 6, < m,
f,—~0andf,,/0, >0 Letp, =e®% n=12..;x=1+r Letr >0,
x = (14 r,0). Set

(X — Upy Up T Upyp)

n = n n ny B = 1, 2;
I g B T )
Then, for n = 1, 2,..., P(y,) = v, . It can be shown that

i 1 PGa) — PG 2

mo [y, —xl| 247"
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Observe that here p(P(x), x — P(x)) == —1. We now extend Theorem 4.1
to n-dimensional C* manifolds in Banach spaces.

We make the following assumptions about the C! manifold M lying in a
Banach space B.

(1) M can be represented locally by a C* function f.
(2) fis a relatively open map in its domain of definition.
(3) f'(a)(R™) is an n-dimensional subspace of B,

(4) Letting m = f(a) we define the tangent plane of M at m to be
T = m + f'(@)(R").

THEOREM 4.3. Let M be a C* approximatively compact n-dimensional
manifold in a Banach space B whose norm is uniformly C?% except at zero.
Assume x € B, x ¢ M and that P is a singleton in a B neighborhood of x (and
hence continuous at x). Assume also that V*| x — P(x)| is positive definite
on the tangent space of M at P(x) and p = p(P(x), (x — P(x))/r) #
| x — P(x)|| = r. Then

Tim I P(y) — Px)l < C)—L
x|y —x] p—r

where C(x) is a positive constant depending on x.

Proof. By a translation we can assume P(x) = 0. Let p = p(0, x/r) and
assume p > 0 (the proof for p < 0 is similar). By Lemma 3.1, for any 9,
0 << & < p, and for y sufficiently close to x, we have

p—8<|—0=— P )
Also, trivially,
ly — P <[yl @

We use the first 3 terms of the Taylor expansion of the norm in (1) to obtain

p—8<(p—8) = VIXIPOY + 35— V2 xIPON® + ol PGIP)

p—
and we do the same in (2) to obtain

Iyl = Viyll(P(y) + Ry | (P(YN® + o(| POD < llyll. (@)
Inequalities (3) and (4) are equivalent, respectively, to

VIXIPOY <55 PIRICON + o PO )
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and
V2 yiP())® < VI y IP(y) + ol P(y)IR). 6

Combining (5) and (6) we get

SV IEON® < Ty = VX DEG) + &
+ oll POIIP)

from which we obtain

S5 Vi)

3 (1= 5 75) X IPOY® < Tyl = VI xDE) + ol PO
™

because as y — x, P(y) — 0 and (V2| y || — V2| x [)}(P(»)*® = o(| P(y)|[®).
Now lim,..[VZ| x || (P(¥)®]/| P(p)I? = C > 0 by our hypothesis on V2,
Also [(V|yll — VIIxI) P(») < k|ly — x| P(p)|| where

k= sup [Vitx+(1 —1)yll.
o<tk

So by (7)

x|y — x| p—o—r

where k¥’ > 0. Hence

— I P . P
1 <k ]
Ry — x| SY =7
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