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We investigate the Lipschitz continuity of the best approximation operator
from a Hilbert (Banach) space into an approximatively compact subset. We study
the notion of directional radius of curvature and show how the Lipschitz con
tinuity of the metric projection depends on it.

1. INTRODUCTION

Let M be a set in a Hilbert space H. We define the metric projection P by
P(x) = {y lyE M and infmEM II x - mil = II x - y II} where x is any element
of H.

In our discussion we shall assume that M is an approximatively compact
set which insures that P(x) is not empty.

If M is a closed convex set then it is well known that each P(x) is a singleton
and II P(y) - P(x)II ~ II y - x II. When M is a C2-approximatively compact
manifold, Jerry Wolfe in [6] has proved that P is a singleton, differentiable
in an open dense subset A (A n M = 0) of H and the present author has
shown in [1] that !I P'(x)11 = pj(p - r) in A where r = i! x - P(x)11 and p is
the radius of curvature of M at P(x) in the direction x - P(x).

If M is a closed subset in Rn, Federer in [3] has proved that under suitable
conditions, P is a singleton and !I P(y) - P(x)11 ~ q[j(q - r)] II x - y II,
where q ~ w(P(y)) and w is the reach; see definition 11-13 in [4].

In this paper we give best estimates for

in various settings.

lim
Y-+(JJ

II F(y) - P(x)li
IIY - xii

2. DEFINITIONS

A subset M of a Banach space B is called approximatively compact if,
for each x E B and each sequence {m n} C M such that \1 x - m n II -->

inf",eM II x - m I', there exists a subsequence {m n ) converging to a point of M.
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3. RADIUS OF CURVATURE
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Let x be in a Banach space Band m be a closest point to x from M(x).

Also let v = (x - m)/11 x - mil.
We consider the line m + tv, t E R, and points fL E M close to m such that

I t I = ii m + tv - fL ii

for some t, - 00 < t < 00. If the above equation holds for no finite t, set
t = 00. We now define the directional radius of curvature of M at m in the
direction v, p(m, v), by

p(m, v) = lim t. where t. = [ sup \! II t [ = II m - fL + tv 111]-1,
.~O O<IIIL-mll« It

It can be shown, see [1], that if M is a C2 manifold in a Hilbert space Hand
if M is locally represented by f around m, then

1 <Aw w)
--=max '
p(m, v) Ilwll=1 <Bw, w)

where

m = f(a), B = j'(a)T j'(a), A = (v, :Z~~»)

The lemma below, which is a generalization of Theorem 11-8 in [4], illustrates
the geometric significance of p(m, v). For convex sets M, p(m, v) :'( 0.

LEMMA 3.1. Let M be a closed set in a Banach space B, x E Band m E P(x),
m =1= x. Let °< 0 < I p(m, v)I, and set Y = m + (p(m, v) - o)v. Then there
exists En > °and an open ball B(m, En) such that:

(a) Ifp(m, v) > °and m' EM n B(m, En), then II y - mil :'( II y - m' Ii.
(b) If p(m, v) < 0, then II y - m' II :'( II y - m II for all m' in M n

B(m, En).

Proof (a) Suppose not. Then for n = 1,2,... there is an mn =1= m in
M n B(m, lIn) such that

liY - mil> Ily - mnll.

Choose an > 0, so that II y - anv - mil = II y - anv - m n II. Substituting
for y and setting p = p(m, v), we get

I p - (, - an I = II m - m n + (p - (, - an)v II·
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Then IiiDn-->oo I/(p - 0 - an) ~ I/(p - 0) > lip, contradicting the definition
of p.

(b) Suppose not. Then, for n = 1,2,... , there is an mn =1= m ill

M n B(m, lin) such that II y - m II < II y - m n II. By definition, p
p(m, v) :0:;; limn-->oo tn < 0 where

I tn I = II m - m~ + tnv II .

Then clearly p - 0 ~ tn :0:;; 0 for n sufficiently large and II y - mil =
I p - 0 I = I p - 0 - tn I+ I tn I ~ II(p - 0 - tn)v II + II(m - m n) + tnv II ~
II(m - mn) + (p - o)v II = II y - mn II, a contradiction.

4. THE POINTWISE LIPSCHITZ CONTINUITY OF THE METRIC PROJECTION

We shall need the following lemma [5, p. 388].

LEMMA 4.1. Let M be an approximatively compact subset of a Banach
space B. Suppose x E B has m as a unique closest point from M and let {xk} be a
sequence converging to x and {mk} a corresponding sequence of closest points
in M. Then m k -+ m.

The following theorem establishes the pointwise Lipschitz continuity of
the metric projection in terms of the radius of curvature.

THEOREM 4.1. Let M be an approximatively compact set in a Hilbert space
H. Suppose x E H, x ¢: M, has m as a unique closest point from M. Assume
p(m, x - mill x - mil) = p =1= II x - mil = r. Then if my E P(y), we have

-I.-llmy-m ll ./ 2p
1m II 11 ~--.

y-->x Y - X I P - r

Proof Without loss of generality assume m = 0 and p > O. (The case
p < 0 can be treated similarly and the case p = 0 can be reduced to that of
p > 0). Since m = 0, v = (x - m)/II x - mil = x/r. By Lemmas 3.1 and4.1,
for any 0 > 0, 0 < 0 < p, if y is sufficiently close to x, we have

I p - 0 I :0:;; II(p - o)v - my II,
and so

p-o
(p - 0)2 :0:;; (p - 0)2 - 2-- <x, my) + II my 11

2.
r

Hence

(1)
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It is also clear that [[ Y - my 1[2 :'.( II Y 112, from which we obtain

[I my 112 :'.( 2(y, my).
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(2)

Write (2) as II my 11 2
:'.( 2(y - x, my) + 2(x, my). We substitute (1) into this

to obtain

(3)

By Lemma 3.2 in [2], r < p, so that if I} is sufficiently small, then
p - I} - r > O. Now inequality (3) implies that

from which we get

and hence

[I my 11 2
:'.( ~(~~ ~ r II y - x II [[ my II

lim II my II ~ 2-----.!!....=~
y->x II y - x II ~ p - I} - r '

-I"- II my II 2p1m ~----
y->x II y - x II ~ p - r

(6)

EXAMPLE. Let H be Euclidean 2-space and M = {e i8 [ 7T :'.( e :'.( 27T} U

{ei8n [ n = 1,2, 3, ...}, where 0 < ... < en+1 < en < ... < e1 < 7T, en -+ 0
and en+1/en -+ O. Then Mis approximative1y compact. Let x = 1 - r with
o < r < 1. It is clear that 1 is the closest point to x in M. Also p(1, -1) = 1.
Consider

(1 ) ( en + en+1 ) . ( en + en+1 ) 1 2Yn = - r cos 2 e' 2 ' n = , ,....

Then pei8n and pei8n+1. are the closest points in M to Yn' Computation gives

I x - Yn I = (1 - r) sin ( en +2 en+1 ) and I 1 - ei8n I = 2 sin ~n ,

so that

I 1 - ei8nI" 2 sin (en /2)lim = hm ~--~~~=---""-~=--~-
n->oo I x - Yn I n->oo (1 - r) sin ((en + en+1)/2)

2
I - r'

This example shows the sharpness of Theorem 4.1. We now obtain a related
result for closed convex sets which is sharper. It should be remarked that for
such sets p :'.( O.
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TmOREM 4.2. Let M be a closed convex set in a Hi/bert space H. Then
for x¢=M,

-1'- II P(y) - P(x)il 2p
1m ~--

y->x II y - x II 2p - r

where p = p(P(x), (x - P(x))jr) and r = II x - P(x)ll.

Proof We may assume P(x) = O. It follows from Lemma 3. 1(b) that for
every S > 0 there exists €(S) > 0 such that if II P(y)ll < €(S), then

from which we get

<x, P(y) ~ 2(p ~ 0) II P(Y)112
•

Also by convexity of M we have <y - P(y), -P(y) ~ 0 which implies

(1)

II P(y)11 2 ~ <y, P(y) = <y - x, P(y) + <x, P(y). (2)

From (1) and (2), we obtain, using Schwarz's inequality,

II P(Y)II::::::: 2(p - S)
II y - xii '"'" 2(p - S) - r .

Hence

-r II P(Y)I!::::::: 2(p - S)
~~ II Y - x II '"'" 2(p - 0) - r

and therefore

-r II P(Y)II ::::::: 2p
/~ II Y - x Ii '"'" 2p - r .

EXAMPLE. Let H be as in the previous example and let M be the convex
set whose boundary is the union of the semicircle ei8, 11" ~ 0 ~ 211" and the
polygon whose vertices are ei8n where 0 ~ ... < On < ... < O2 < 01 < 11",
On ~ 0 and On+ljOn ~ O. Let Vn = ei8n, n = 1,2,... ; x = 1 + r. Let r > 0,
x = (1 + r, 0). Set

<x - Vn , Vn + vn+l) (+ ) + 1 2
Yn = II + 112 Vn Vn+1 Vn , n = , ,....

Vn Vn+1

Then, for n = 1,2,... , P(Yn) = Vn . It can be shown that

lim II P(Yn) - P(x)11 = _2_
n->ro II Yn - X II 2 + r .
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Observe that here p(P(x), x - P(x» = -1. We now extend Theorem 4.1
to n-dimensional Cl manifolds in Banach spaces.

We make the following assumptions about the Cl manifold M lying in a
Banach space B.

(I) M can be represented locally by a Cl function f
(2) f is a relatively open map in its domain of definition.

(3) f'(a)(Rn) is an n-dimensional subspace of B.

(4) Letting m = f(a) we define the tangent plane of M at m to be
Tm == m + f'(a)(Rn).

TH:EOREM 4.3. Let M be a Cl approximatively compact n-dimensional
manifold in a Banach space B whose norm is uniformly C2 except at zero.
Assume x E B, x ~ M and that P is a singleton in a B neighborhood of x (and
hence continuous at x). Assume also that V2 11 x - P(x)11 is positive definite
on the tangent space of M at P(x) and p = p(P(x), (x - P(x»lr) =1=

II x - P(x) II = r. Then

lim II P(y) - P(x)1I ~ C(x) _p_
y->x Ily-xll p-r

where C(x) is a positive constant depending on x.

Proof By a translation we can assume P(x) = O. Let p = p(O, xlr) and
assume p > 0 (the proof for p ~ 0 is similar). By Lemma 3.1, for any 0,
o< 0 < p, and for y sufficiently close to x, we have

Also, trivially,

p - 0 ~"(p - 0) ; - P(y) II.

lIy - P(y)1I ~ Ilyll·

(1)

(2)

We use the first 3 terms of the Taylor expansion of the norm in (1) to obtain

p - 0 ~ (p - 0) - V II x II(P(y» + ~ p ~ 0 V211 X II(P(y»<2l + 0([1 P(Y)112)

and we do the same in (2) to obtain

II y II - V II y II (P(y» + tV2 11 y II (P(y»(2) + 0([1 P(y)112) ~ II y II. (4)

Inequalities (3) and (4) are equivalent, respectively, to

V II x II(P(y» ~ ~ p ::... 0 V21f x II(P(y»(2l + 0(11 P(Y)112) (5)
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and
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tV2
11 y il(P(y))(2l ~ V II y II(P(y)) + 0(11 p(Y)ln (6)

Combining (5) and (6) we get

~ V211 y II(P(y»(2l ~ (V II y II - V II x II)(P(y» + ~ p ~ 0 V211 X II(P(y))<2l

+ 0(11 P(y)112
)

from which we obtain

~ (1 - pro) V2
11 X II(P(y»)<2l ~ (V II y II - V II x II)(P(y» + 0(11 P(Y)112)

(7)

because as y - x, P(y) - 0 and (V211 y II - V211 x II)(P(y»(2l = 0(11 p(Y)ln
Now lim?l~",[V211x II (P(y))<2)]/11 P(y)112~ C > 0 by our hypothesis on V2.
Also I(v II y II - V II x II) P(y)1 ~ k II y - x [III P(y)11 where

k = sup II V211 tx + (l - t) y I1I1 .
O~t<l

So by (7)

lim II P(y)11 s:: k' p - 0
y-+x II y - x II "'" p - 0 - r

where k' > O. Hence

lim II P(y)11 ~ k' _P_
y-+x II y - x II p - r
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