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We investigate the Lipschitz continuity of the best approximation operator
from a Hilbert (Banach) space into an approximatively compact subset. We study
the notion of directional radius of curvature and show how the Lipschitz con­
tinuity of the metric projection depends on it.

1. INTRODUCTION

Let M be a set in a Hilbert space H. We define the metric projection P by
P(x) = {y lyE M and infmEM II x - mil = II x - y II} where x is any element
of H.

In our discussion we shall assume that M is an approximatively compact
set which insures that P(x) is not empty.

If M is a closed convex set then it is well known that each P(x) is a singleton
and II P(y) - P(x)II ~ II y - x II. When M is a C2-approximatively compact
manifold, Jerry Wolfe in [6] has proved that P is a singleton, differentiable
in an open dense subset A (A n M = 0) of H and the present author has
shown in [1] that !I P'(x)11 = pj(p - r) in A where r = i! x - P(x)11 and p is
the radius of curvature of M at P(x) in the direction x - P(x).

If M is a closed subset in Rn, Federer in [3] has proved that under suitable
conditions, P is a singleton and !I P(y) - P(x)11 ~ q[j(q - r)] II x - y II,
where q ~ w(P(y)) and w is the reach; see definition 11-13 in [4].

In this paper we give best estimates for

in various settings.

lim
Y-+(JJ

II F(y) - P(x)li
IIY - xii

2. DEFINITIONS

A subset M of a Banach space B is called approximatively compact if,
for each x E B and each sequence {m n} C M such that \1 x - m n II -->­

inf",eM II x - m I', there exists a subsequence {m n ) converging to a point of M.
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3. RADIUS OF CURVATURE
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Let x be in a Banach space Band m be a closest point to x from M(x).

Also let v = (x - m)/11 x - mil.
We consider the line m + tv, t E R, and points fL E M close to m such that

I t I = ii m + tv - fL ii

for some t, - 00 < t < 00. If the above equation holds for no finite t, set
t = 00. We now define the directional radius of curvature of M at m in the
direction v, p(m, v), by

p(m, v) = lim t. where t. = [ sup \! II t [ = II m - fL + tv 111]-1,
.~O O<IIIL-mll« It

It can be shown, see [1], that if M is a C2 manifold in a Hilbert space Hand
if M is locally represented by f around m, then

1 <Aw w)
--=max '
p(m, v) Ilwll=1 <Bw, w)

where

m = f(a), B = j'(a)T j'(a), A = (v, :Z~~»)

The lemma below, which is a generalization of Theorem 11-8 in [4], illustrates
the geometric significance of p(m, v). For convex sets M, p(m, v) :'( 0.

LEMMA 3.1. Let M be a closed set in a Banach space B, x E Band m E P(x),
m =1= x. Let °< 0 < I p(m, v)I, and set Y = m + (p(m, v) - o)v. Then there
exists En > °and an open ball B(m, En) such that:

(a) Ifp(m, v) > °and m' EM n B(m, En), then II y - mil :'( II y - m' Ii.
(b) If p(m, v) < 0, then II y - m' II :'( II y - m II for all m' in M n

B(m, En).

Proof (a) Suppose not. Then for n = 1,2,... there is an mn =1= m in
M n B(m, lIn) such that

liY - mil> Ily - mnll.

Choose an > 0, so that II y - anv - mil = II y - anv - m n II. Substituting
for y and setting p = p(m, v), we get

I p - (, - an I = II m - m n + (p - (, - an)v II·
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Then IiiDn-->oo I/(p - 0 - an) ~ I/(p - 0) > lip, contradicting the definition
of p.

(b) Suppose not. Then, for n = 1,2,... , there is an mn =1= m ill

M n B(m, lin) such that II y - m II < II y - m n II. By definition, p
p(m, v) :0:;; limn-->oo tn < 0 where

I tn I = II m - m~ + tnv II .

Then clearly p - 0 ~ tn :0:;; 0 for n sufficiently large and II y - mil =
I p - 0 I = I p - 0 - tn I+ I tn I ~ II(p - 0 - tn)v II + II(m - m n) + tnv II ~
II(m - mn) + (p - o)v II = II y - mn II, a contradiction.

4. THE POINTWISE LIPSCHITZ CONTINUITY OF THE METRIC PROJECTION

We shall need the following lemma [5, p. 388].

LEMMA 4.1. Let M be an approximatively compact subset of a Banach
space B. Suppose x E B has m as a unique closest point from M and let {xk} be a
sequence converging to x and {mk} a corresponding sequence of closest points
in M. Then m k -+ m.

The following theorem establishes the pointwise Lipschitz continuity of
the metric projection in terms of the radius of curvature.

THEOREM 4.1. Let M be an approximatively compact set in a Hilbert space
H. Suppose x E H, x ¢: M, has m as a unique closest point from M. Assume
p(m, x - mill x - mil) = p =1= II x - mil = r. Then if my E P(y), we have

-I.-llmy-m ll ./ 2p
1m II 11 ~--.

y-->x Y - X I P - r

Proof Without loss of generality assume m = 0 and p > O. (The case
p < 0 can be treated similarly and the case p = 0 can be reduced to that of
p > 0). Since m = 0, v = (x - m)/II x - mil = x/r. By Lemmas 3.1 and4.1,
for any 0 > 0, 0 < 0 < p, if y is sufficiently close to x, we have

I p - 0 I :0:;; II(p - o)v - my II,
and so

p-o
(p - 0)2 :0:;; (p - 0)2 - 2-- <x, my) + II my 11

2.
r

Hence

(1)
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It is also clear that [[ Y - my 1[2 :'.( II Y 112, from which we obtain

[I my 112 :'.( 2(y, my).
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(2)

Write (2) as II my 11 2
:'.( 2(y - x, my) + 2(x, my). We substitute (1) into this

to obtain

(3)

By Lemma 3.2 in [2], r < p, so that if I} is sufficiently small, then
p - I} - r > O. Now inequality (3) implies that

from which we get

and hence

[I my 11 2
:'.( ~(~~ ~ r II y - x II [[ my II

lim II my II ~ 2-----.!!....=~
y->x II y - x II ~ p - I} - r '

-I"- II my II 2p1m ~----
y->x II y - x II ~ p - r

(6)

EXAMPLE. Let H be Euclidean 2-space and M = {e i8 [ 7T :'.( e :'.( 27T} U

{ei8n [ n = 1,2, 3, ...}, where 0 < ... < en+1 < en < ... < e1 < 7T, en -+ 0
and en+1/en -+ O. Then Mis approximative1y compact. Let x = 1 - r with
o < r < 1. It is clear that 1 is the closest point to x in M. Also p(1, -1) = 1.
Consider

(1 ) ( en + en+1 ) . ( en + en+1 ) 1 2Yn = - r cos 2 e' 2 ' n = , ,....

Then pei8n and pei8n+1. are the closest points in M to Yn' Computation gives

I x - Yn I = (1 - r) sin ( en +2 en+1 ) and I 1 - ei8n I = 2 sin ~n ,

so that

I 1 - ei8nI" 2 sin (en /2)lim = hm ~--~~~=---""-~=--~-
n->oo I x - Yn I n->oo (1 - r) sin ((en + en+1)/2)

2
I - r'

This example shows the sharpness of Theorem 4.1. We now obtain a related
result for closed convex sets which is sharper. It should be remarked that for
such sets p :'.( O.
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TmOREM 4.2. Let M be a closed convex set in a Hi/bert space H. Then
for x¢=M,

-1'- II P(y) - P(x)il 2p
1m ~--

y->x II y - x II 2p - r

where p = p(P(x), (x - P(x))jr) and r = II x - P(x)ll.

Proof We may assume P(x) = O. It follows from Lemma 3. 1(b) that for
every S > 0 there exists €(S) > 0 such that if II P(y)ll < €(S), then

from which we get

<x, P(y) ~ 2(p ~ 0) II P(Y)112
•

Also by convexity of M we have <y - P(y), -P(y) ~ 0 which implies

(1)

II P(y)11 2 ~ <y, P(y) = <y - x, P(y) + <x, P(y). (2)

From (1) and (2), we obtain, using Schwarz's inequality,

II P(Y)II::::::: 2(p - S)
II y - xii '"'" 2(p - S) - r .

Hence

-r II P(Y)I!::::::: 2(p - S)
~~ II Y - x II '"'" 2(p - 0) - r

and therefore

-r II P(Y)II ::::::: 2p
/~ II Y - x Ii '"'" 2p - r .

EXAMPLE. Let H be as in the previous example and let M be the convex
set whose boundary is the union of the semicircle ei8, 11" ~ 0 ~ 211" and the
polygon whose vertices are ei8n where 0 ~ ... < On < ... < O2 < 01 < 11",
On ~ 0 and On+ljOn ~ O. Let Vn = ei8n, n = 1,2,... ; x = 1 + r. Let r > 0,
x = (1 + r, 0). Set

<x - Vn , Vn + vn+l) (+ ) + 1 2
Yn = II + 112 Vn Vn+1 Vn , n = , ,....

Vn Vn+1

Then, for n = 1,2,... , P(Yn) = Vn . It can be shown that

lim II P(Yn) - P(x)11 = _2_
n->ro II Yn - X II 2 + r .
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Observe that here p(P(x), x - P(x» = -1. We now extend Theorem 4.1
to n-dimensional Cl manifolds in Banach spaces.

We make the following assumptions about the Cl manifold M lying in a
Banach space B.

(I) M can be represented locally by a Cl function f
(2) f is a relatively open map in its domain of definition.

(3) f'(a)(Rn) is an n-dimensional subspace of B.

(4) Letting m = f(a) we define the tangent plane of M at m to be
Tm == m + f'(a)(Rn).

TH:EOREM 4.3. Let M be a Cl approximatively compact n-dimensional
manifold in a Banach space B whose norm is uniformly C2 except at zero.
Assume x E B, x ~ M and that P is a singleton in a B neighborhood of x (and
hence continuous at x). Assume also that V2 11 x - P(x)11 is positive definite
on the tangent space of M at P(x) and p = p(P(x), (x - P(x»lr) =1=

II x - P(x) II = r. Then

lim II P(y) - P(x)1I ~ C(x) _p_
y->x Ily-xll p-r

where C(x) is a positive constant depending on x.

Proof By a translation we can assume P(x) = O. Let p = p(O, xlr) and
assume p > 0 (the proof for p ~ 0 is similar). By Lemma 3.1, for any 0,
o< 0 < p, and for y sufficiently close to x, we have

Also, trivially,

p - 0 ~"(p - 0) ; - P(y) II.

lIy - P(y)1I ~ Ilyll·

(1)

(2)

We use the first 3 terms of the Taylor expansion of the norm in (1) to obtain

p - 0 ~ (p - 0) - V II x II(P(y» + ~ p ~ 0 V211 X II(P(y»<2l + 0([1 P(Y)112)

and we do the same in (2) to obtain

II y II - V II y II (P(y» + tV2 11 y II (P(y»(2) + 0([1 P(y)112) ~ II y II. (4)

Inequalities (3) and (4) are equivalent, respectively, to

V II x II(P(y» ~ ~ p ::... 0 V21f x II(P(y»(2l + 0(11 P(Y)112) (5)
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and
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tV2
11 y il(P(y))(2l ~ V II y II(P(y)) + 0(11 p(Y)ln (6)

Combining (5) and (6) we get

~ V211 y II(P(y»(2l ~ (V II y II - V II x II)(P(y» + ~ p ~ 0 V211 X II(P(y))<2l

+ 0(11 P(y)112
)

from which we obtain

~ (1 - pro) V2
11 X II(P(y»)<2l ~ (V II y II - V II x II)(P(y» + 0(11 P(Y)112)

(7)

because as y - x, P(y) - 0 and (V211 y II - V211 x II)(P(y»(2l = 0(11 p(Y)ln
Now lim?l~",[V211x II (P(y))<2)]/11 P(y)112~ C > 0 by our hypothesis on V2.
Also I(v II y II - V II x II) P(y)1 ~ k II y - x [III P(y)11 where

k = sup II V211 tx + (l - t) y I1I1 .
O~t<l

So by (7)

lim II P(y)11 s:: k' p - 0
y-+x II y - x II "'" p - 0 - r

where k' > O. Hence

lim II P(y)11 ~ k' _P_
y-+x II y - x II p - r
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